tabnllsqfit in=table-file [parameter=value]
The inputfile is an ascii file in a tabular format, where on every line there must be an assigned column for the X- and Y-coordinate(s). An optional column can be assigned to the errors in Y (the DY-coordinates, the inverse square of these being used as a weight). If no DY-column is assigned, it is assumed that the errors in Y are all the same and equal to 1. Lines starting with the ’#’ symbol are comment lines. Certain models (see fit= below) allow multiple X or Y columns.
Each fit can also produce an output file with an additional column computing the difference between the data and the model (in that order). In the special case where the user has supplied no free parameters, the residuals are still computed correctly.
This routine can also be used to plot the function, although only in 1D cases, see x=.
line y=p0+p1*x (same as poly,order=1) plane z=p0+p1*x+p2*y (example order=2) polynomial y=p0+p1*x+p2*x^2+p3*x^3... (example order=3) gauss1d y=p0+p1*exp(-(x-p2)^2/(2*p3^2)) gauss2d y=p0+p1*exp(-[(x-p2)^2+(x-p3)^2]/(2*p4^2)) exp y=p0+p1*exp(-(x-p2)/p3) grow y=p0*(exp(x/p1)-1) arm y=p0+p1*cos(x)+p2*sin(x) arm3 y=p0+p1*cos(x)+p2*sin(x)+p3*cos(3*x)+p4*sin(3*x) loren y=p1/PI( (x-p0)^2 + p1^2 ) psf y=p1*x^p2*sin(y)^p3+p4
% nemoinp 1:100 |\ tabmath - - "%1+rang(0,10),ranu(1,2)" seed=123 |\ tabnllsqfit - 1 2 3 nrt=0 Fitting a+bx: a= 1.50492 2.25695 b= 1.00159 0.0380961Here is an example of a 2D plane in 3D: (1+2x+3y)
% ccdmath "" - ’1+2*%x+3*%y+rang(0,0.1)’ 5,5 seed=123 |\ ccdprint - x= y= label=x,y newline=t |\ tabnllsqfit - 1,2 3 fit=plane order=2 nrt=0 Fitting p0+p1*x1+p2*x2+.....pN*xN: (N=2) p0= 1.0688 0.0523819 p1= 2.01497 0.0165646 p2= 2.97436 0.0165646And a fit to a gaussian:
% nemoinp 1:100 |\ tabmath - - ’4+exp(-(%1-50)**2/(200))+ranu(0,1)’ seed=123 |\ tabnllsqfit - fit=gauss1d par=4,1,50,10 nrt=13 Fitting a+b*exp(-(x-c)^2/(2*d^2)): a= 4.46714 0.0416026 b= 1.13036 0.0994723 c= 50.2263 0.845469 d= 8.70728 0.959347 rms2/chi2= 8.92068 rms/chi = 1Here is a contrived example of plotting the function to be plotted, by fixing all parameters and computing a residual table from 0s:
% nemoinp 0:10:0.1 | tabmath - tab0 0 % tabnllsqfit tab0 1 2 fit=gauss par=1,2,5,1 free=0,0,0,0 out=tab0.d % tabmath tab0.d - %1,-%3 | tabplot -
Here is an example of removing outlier points and fitting again:
% nemoinp 1:10 |\ tabmath - - ’2*%1+1+rang(0,0.1)’ seed=123 |\ tabnllsqfit - fit=line nsigma=1.5::3 nrt=0 Fitting a+bx: a= 1.09548 0.0775617 b= 1.99937 0.0125002 2/10 points outside 1.5*sigma (0.152328) nrt=0 Fitting a+bx: a= 1.02651 0.0452119 b= 2.01358 0.00753531 0/8 points outside 1.5*sigma (0.080422)Although 3 iterations were requested, after the first iteration no more points were removed, and the iterations were stopped.
Here is an example
of estimating the errors via a bootstrap (resampling of errors) method.
Fitting a polynomial of order 2 and taking 100 bootstrap samples:
% tabnllsqfit tab11 fit=poly order=2 bootstrap=100 nrt=0 Fitting p0+p1*x+p2*x^2+.....pN*x^N: (N=2) p0= 3.11325 0.192787 p1= 1.97474 0.0896959 p2= 0.00157311 0.008639 bootstrap= 3.11603 0.164922 1.96464 0.086429 0.00293632 0.00820007 ^^^^ ^^^^^ ^^^^^ ^^^^^ ^^^^^^ ^^^^^^ P0 dP0 P1 dP2 P3 dP3
Here is an example of calling tabnllsqfit twice, once to fit a baseline, extract the fit parameters, and a second time to subtract the baseline using the parameters without a fit and using out=. The input table has two columns, velocity and intensity, but a bad baseline between -400 and +500. There is a spectral line between 0 and 25 km/s, so we fit a local high order baseline between -100 and +100 but excluding the line:
tabplot MonR2_110433__0.txt line=1,1 tabnllsqfit MonR2_110433__0.txt xrange=-100:-20,45:150 fit=poly order=3 > pars0 p0=$(txtpar pars0 p0=p0=,1,2 p1=p1=,1,2 p2=p2=,1,2 p3=p3=,1,2) tabnllsqfit MonR2_110433__0.txt fit=poly order=3 out=- free=0,0,0,0 par="$p0" | tabcomment - > tab0 tabplot tab0 1 3 -50 50 -1 15 line=1,1 ycoord=0
Here is an example of the file myline.c that can be used with
fit=line load=myline.so and compiled with
bake myline.so
/* File: myline.c */ #include <stdinc.h> real func_line(real *x, real *p, int np) { return p[0] + p[1]*x[0]; } void derv_line(real *x, real *p, real *e, int np) { e[0] = 1.0; e[1] = x[0]; }
One word of caution: if you find the program having a hard time finding a solution in complex cases, it is quite possible that this is not due to the fact that the function is complex, but due to noise or bad initial conditions.
% cd $NEMO/src/kernel/tab/fit ; bake gaussn.so % echo 1 1 | tabnllsqfit - load=gaussn.so fit=gaussn par=1,2,1,0.2 x=1.1:1.4:0.1 1.1 2.76499 1 0.882497 4.41248 2.20624 1.2 2.21306 1 0.606531 6.06531 6.06531 1.3 1.6493 1 0.324652 4.86979 7.30468 1.4 1.27067 1 0.135335 2.70671 5.41341But to check if the analytical derivates in derv_gaussn() are correct, repeating the same value of x a number of times, each parameter is incremented by a decreasing factor of 0.1
% echo 1 1 | tabnllsqfit - load=gaussn.so fit=gaussn par=1,2,1,0.2 x=1.4::4 # par iter Y dP (Y-Y0)/dP [(Y-Y0)/dP - dY/dP] 0 0 1.37067 0.1 1 [8.88178e-16] 0 1 1.32067 0.05 1 [5.32907e-15] ... 0 9 1.27087 0.000195313 1 [1.36424e-12] 1 0 1.2842 0.1 0.135335 [2.16493e-15] ... 2 0 1.6493 0.1 3.78634 [1.07964] 2 1 1.43253 0.05 3.2372 [0.53049] ... 2 8 1.27173 0.000390625 2.71067 [0.00396662] 2 9 1.2712 0.000195313 2.70869 [0.00198288] 3 0 1.82222 0.1 5.51554 [0.102129] 3 1 1.55607 0.05 5.70808 [0.294669] ... 3 8 1.27279 0.000390625 5.41867 [0.00525903] 3 9 1.27173 0.000195313 5.41605 [0.00263639]You can see that the offset (par 0) and amplitude (par 1) of the gauss are well behaved (as they are linear), but the centroid (par 2) and width (par 3) of the gauss only slowly converge linearly with the step. The last number in square brackets is the error between numerical and analytical derivative.
Numerical Recipies in C, Ch.14
NLREG: http://www.nlreg.com
NIST non-linear: http://www.itl.nist.gov/div898/strd/lls/lls.shtml
NIST linear: http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
fityk: http://fityk.nieto.pl/
A new scheme for calculating weights and describing correlations in nonlinear least squares fits. (Hessler, Curent & Ogren, C.I.P. 10, 186, 1996): http://dx.doi.org/10.1063/1.168569
~/src/kernel/tab tabnllsqfit.c ~/src/kernel/tab/fit example fitting functions
12-jul-02 V1.0 cloned off tablsqfit PJT 17-jul-02 V1.1 added load=, x=, numrec= PJT 11-sep-02 V1.1e changes error/warning to accomodate residual writen PJT 21-nov-02 V1.4 nsigma= can be an array of iterations PJT 14-feb-03 V1.6 arm,arm3 for Rahul PJT 21-mar-03 V1.7 added bootstrap=, seed= PJT 4-apr-03 V1.8 fixed error in using dycol=, and introduced dypow= PJT 15-mar-04 V1.8b added fit=loren and corrected lab= setting for functions PJT/RS 21-nov-05 V2.0 added fit=gauss1d,gauss2d PJT 24-apr-08 V2.1 added psf PJT 7-may-10 V2.2 added grow PJT 24-dec-11 V2.3b estimate gauss1d if no initial par given PJT 9-dec-12 V3.0 new style xrange= with multiple segments PJT 9-oct-13 V4.0 numrec= is now method= for mpfit trials, add function deriv checker PJT