This HTML automatically generated with rman for NEMO
Table of Contents

Name

units - various units used in simulations

Description

Most NEMO programs use the "virial" (sometimes also called "N-Body" or "Henon" (1971) units) units as described by Heggie & Mathieu (1986). We also list a few other common units, and the value of the gravitational constant in these. Notably some of the potential(5NEMO) descriptors use other unit systems.

The gravitational constant is often set to unity in N-body codes, since it saves a precious floating point operation! For sake of completeness, here are a few values of G in some other ’common’ unit systems, recalling that (G*m)/(r*v*v) is dimensionless:

mass    pos    vel    G           1/G         time    "system"
g    cm        cm/s    6.6732e-8      1.49853e+07      s       (cgs)
kg    m     m/s    6.6732e-11     1.49853e+10    s        (SI)
1.Msun    AU    km/s    886.8    1.128e-3    4.74yr    (planets)
1.Msun    AU    29.8 km/s    1    1    0.159yr    (planets)
1.Msun    AU    .    39.478    .    1yr    (planets)
1.Msun    pc       km/s        .               2.32385e2    1e6.yr    (starcluster)
1.Msun    kpc       km/s        .              2.32385e5    1e9.yr    [gravhopper]
1e10.Msun    10.kpc    100.km/s    .                 2.32385    1e8.yr    (galaxy)
1e10.Msun    1.kpc    1.km/s    43007.1    .    1e9.yr    [gadget] 
~2e4.Msun    kpc       ~990.km/s    1              1    1e6.yr    (galaxy)
1e11.Msun    10.kpc    ~97.8.km/s    4.497           0.22237    1e8.yr    (galaxy)

Units

For the purpose of comparison of results obtained by different authors, it is very convenient if they share a common system of units. The following system of units seems to find quite wide (if not universal) favor. The units are such that:
            G = 1
            M = 1
            E = -1/4
        
where G is the gravitational constant, M the total initial mass, and E
the
initial energy. The corresponding units of mass, length and time are then
            U_m = M
            U_l = - G M^2 / (4E)
            U_t = G M^2.5 / (-4E)^1.5
(cf. Henon, 1971).
The choice for E may look odd, but corresponds to a virial radius R (harmonic mean particles separation) equal to unity for a system in virial equilibrium. In N-body work a somewhat different, actually N-dependant, system is sometimes still used (cf. Aarseth 1972), but leads to a crossing time scale proportional to N^(-1/2). This system is also unsuitable for galaxy simulations, where neither the number of stars nor the number of particles in the simulation is relevant to the imortant dynamical timescales. There are of course stellar dynamical calculations for which the above described units are unsuitable, e.g. unbound systems or cosmological simulations.

Examples

Given a Plummer sphere in virial units
     mkplummer p100 100 seed=123
we can scale this to .... using
     snapscale p100 p100.gal

See Also

units(1NEMO) , nemoinp(1NEMO)
      
Heggie, D.C. and Mathieu, R.D. 
Standardized Units and Time Scales, in:
The Use of Supercomputers in Stellar Dynamics, ed. P. Hut and
S. McMillan. (1986, Spinger Verlag)
Henon, M. (1971) - https://ui.adsabs.harvard.edu/abs/1971Ap%26SS..14..151H/
NPL’s United of Measurement webpage: http://www.npl.co.uk/npl/reference/
AstroTables: http://nedwww.ipac.caltech.edu/level5/tabular_info.html
https://en.wikipedia.org/wiki/N-body_units

Author

Peter Teuben

Update History


7-may-96    Created      PJT
18-aug-2022    Format/Updates    PJT
27-jan-2023    Henon reference    PJT


Table of Contents